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Società Italiana di Fisica
Springer-Verlag 2002

Self-organized branching process for a one-dimensional rice-pile
model

F. Slaninaa

Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Praha, Czech Republic

Received 21 June 2001 and Received in final form 14 November 2001

Abstract. A self-organized branching process is introduced to describe one-dimensional rice-pile model
with stochastic topplings. Although the branching processes are generally expected to describe well high-
dimensional systems, our modification highlights some of the peculiarities present in one dimension. We find
analytically that the crossover behavior from the trivial one-dimensional BTW behaviour to self-organized
criticality is characterised by a power-law distribution of avalanches. The finite-size effects, which are
crucial to the crossover, are calculated.

PACS. 05.65.+b Self-organized systems – 05.70.Jk Critical point phenomena – 45.70.-n Granular systems

1 Introduction

Since the pioneering work of Bak, Tang and Wiesenfeld
(BTW) [1,2], the sand-pile model became one of proto-
type abstract models exhibiting self-organized criticality
(SOC). The original BTW model and its variants (see
e.g. [3–7]) consists of a cellular automaton slowly driven
by stochastic perturbations. The state of each site is de-
scribed by the number of grains on top of it. (Actually, this
number represents the slope rather than the height, if we
want to interpret the model as a real sand-pile. However,
in the 1D model, investigated here, the description using
slope and height variables are strictly equivalent.) If the
number of grains exceeds a threshold, the site becomes
active, a toppling occurs and grains are transferred to
neighbouring sites, which then may become active and the
process continues. The driving consists of adding grains
at randomly chosen sites. The critical state is reached
asymptotically in the limit of infinitely slow driving [8].
Fully deterministic versions were also studied, showing pe-
riodic [9,10] or self-similar but non-random behaviour [11].

Even though experiments on real sand-piles did not
confirm SOC behaviour, due to inertia effects [12–18], in
the experiments using rice [19,20] instead of sand it was
found that large aspect ratio of the rice grains (in contrast
to sand which consists at almost special grains) can lead to
SOC behaviour [19], has grains much closer to spherical.

Another difference between a typical sand-pile and
rice-pile experiments is that the rice-piles used in the ex-
periments are quasi one-dimensional [19,20]. While the
original BTW model in one dimension is trivial, there are
several variants of the 1D BTW model which exhibit non-
trivial behaviour [3,11,21–25]. Also the sand-piles on quasi
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one-dimensional stripes were investigated [26]. Several
one-dimensional models devised especially for modelling
the rice-piles were studied [27–37]. The models which take
into account a possible long-range rolling of grains are
able to describe the transition from SOC behaviour typ-
ical for rice-piles to the inertia-dominated behaviour of
sand heaps [38,39].

Besides numerous exact results and renormalisation-
group calculations (to cite only a few items of a vast
bibliography, see [40–46]), the mean-field approxima-
tion [47–49] was very useful in clarifying the nature of
the SOC state, even though it cannot give correct values
of the exponents below the upper critical dimension.

It was soon realised that the mean-field approxima-
tion for sand-piles is related to the critical branching pro-
cesses [50,51]. This idea lead to the introduction of a self-
organized branching processes [52–57], which describe the
approach to the critical state. Similar approaches consist
of mapping the sand-pile to percolation on a Bethe lat-
tice [58].

The approximation is based on the observation that
in high dimensions, activity returns to the same site
with a very small probability. So, we can suppose that
in each step the toppling occurs at a site, which has
never toppled before during the same avalanche. Each
toppling is mapped to one branching. Statistical prop-
erties of avalanches are determined by the probability p
of branching. This probability is itself determined self-
consistently. If the avalanche is sub-critical, it does not
fall off the system and the average number of grains, and
thus p, increases. If, on the other hand, the avalanche is
super-critical, it surely falls off the system, which leads
to a decrease of the average number of grains and a de-
crease of p. It was shown [52], that this process sets the p
exactly to the critical value, where the avalanche sizes s
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have power-law distribution P (s) ∼ s−τ with mean-field
exponent τ = 3

2 .
The purpose of this work is to modify the self-

organized branching processes in order to describe one-
dimensional rice-pile models. Our model will be designed
to include the one-dimensional BTW model as a special
case. Clearly we cannot obtain correct values of the ex-
ponents. Our main question will be, whether there is a
sharp transition from trivial 1D BTW behaviour to SOC
behaviour or what is the nature of the crossover from the
former to the latter.

The paper is organised as follows. In the next sec-
tion we define our version of the branching process, suit-
able for treating the one-dimensional rice-pile. We find the
condition for the criticality and investigate the crossover
from trivial one-dimensional BTW behaviour to the crit-
ical branching process. The self-organization toward the
critical state is investigated in the Section 3. We first de-
fine the self-organized branching process, then find the
fixed point of the dynamics and show that it exactly cor-
responds to a critical branching process. We finally inves-
tigate the influence of finite size effects and find the finite-
size scaling form. Section 4 concludes and summarises the
work.

2 Branching process for one-dimensional
model

2.1 Ricepile model

The rice-pile models were already thoroughly investigated
by numerical simulations. In fact, there are two variants of
the one-dimensional rice-pile model. The so-called “Oslo
model” [30–33] supposes that the critical slope depends
on space and time, and assumes a new random value
after each toppling event. Another approach [27–29] as-
sumes that the toppling occurs with a certain probabil-
ity, which depends on the actual slope. It is the second
approach, which we will follow in this article. It may be
also noted that a two-dimensional model which also im-
plements stochastic topplings was studied before [59].

We recall shortly the definition of the model. We con-
sider a chain of L sites. The state of site i, i = 1, 2, ..., L is
described by a slope zi = hi−hi+1 where the height hi is a
non-negative integer, with boundary condition hL+1 = 0.
If the pile is in a stable state and a grain is dropped on the
site i = 1, the update then proceeds for all sites in parallel.
We look for all sites which satisfy at least one of the two
conditions (i) it just toppled, (ii) its right-hand or left-
hand neighbour toppled [27]. If i is such a site, it topples
with probability 1, if zi > 2, with probability α ∈ [0, 1] if
zi = 2 and with probability 0 if zi < 2. A toppling at the
site i means that zi is decreased by 2 and zi−1 and zi+1

are increased by 1.
For α = 0 or α = 1 we recover the standard one-

dimensional BTW sand-pile model with critical slope zc =
1 or zc = 2, respectively. In the intermediate region, 0 <
α < 1, self-organized criticality was found in numerical

simulations, with avalanche exponent τ = 1.55±0.02 [29].
However, it is not clear, what is the behaviour of the model
for α close to either 1 or 0. It seems, that for a finite sys-
tem the behaviour is SOC (modified by finite size effects)
only if α is not too close to 1 or 0 [34,60]. The behaviour
of the system when the system size diverges and α stays
close 0 or 1 has not been clarified. We would like to study
this question within the approximation provided by a self-
organized branching process.

2.2 Characteristic functions

From the technical point of view we will use the method
of a characteristic function (discrete Laplace transform),
defined for a function f(s) on integer numbers s as f̂(ζ) =∑∞
s=0 ζ

sf(s).
We will see that the distribution of avalanches have

generic form

P (s) ∼ s−τe−s/s0 (1)

for large s. In the mean-field approximation or in the
branching process we have τ = 3/2, while in the one-
dimensional BTW sand-pile the exponent is τ = 0. The
process is critical, if the cutoff avalanche size s0 diverges
(s0 →∞).

In the language of characteristic functions the be-
haviour (1) translates to the properties of the singu-
larity in P̂ (ζ). Generally we have P̂ (ζ) ∼ (ζ − ζ0)η +
nonsingular part. For the one-dimensional BTW pro-
cess we have η = −1, while a true branching process has
η = 1/2. The cutoff is given by the distance of the singu-
larity from the point ζ = 1, namely s0 ' 1/|ζ0 − 1|. The
process is critical, if ζ0 = 1.

We will also see that the characteristic function for the
branching process is typically the solution of a quadratic
equation. The singular part of the characteristic function
comes from the square root of the discriminant D(ζ) of
the equation, i.e. P̂ (ζ) ∼

√
D(ζ) + nonsingular part.

Therefore, η = 1/2 and the cutoff is given by the solution
of the equation D(ζ0) = 0. If D(1) = 0, we have s0 = ∞
and the process is critical.

2.3 Branching process

Let us first recall how the branching process is used to de-
scribe the simplest case of the sand-pile model, for which
in each toppling event two grains are transferred to two
randomly chosen nearest neighbours (Manna model [6]).
There are N0 sites in state z = 0 and N1 sites in state
z = 1. The branching process starts by dropping a grain
onto a randomly chosen site. The probability of becom-
ing active (of toppling) is p = N1

N0+N1
. Two new branches

arise from an active site. Each of them is active with prob-
ability p and a tree is created iteratively. The branching
process stops, when no active sites are present at the end-
points of the tree. The number of active sites, or number of
branchings, corresponds to the size of the avalanche. The
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probability distribution of avalanche sizes can be easily
obtained with the use of characteristic functions [52–56]
and gives the mean-field value of the exponent τ = 3/2

Approximating the sand- or rice-pice models by a
branching process is well justified in high dimensions,
where the activity returns to the same point with very
small probability. It seems, therefore, that the use of a
branching processes in the opposite limit, in one dimen-
sion, lacks sense, because the return of activity is very
frequent. However, we can use a very simple property of
the return of activity to make the approximation sensible.
Indeed, the most frequent case when the activity returns
to the same site is described by the following process.

If the site i is active (it topples), a grain is transferred
to site i + 1 which can become active. If that happens,
another grain is transferred back to site i (and also to site
i + 2, but this is not important now) and thus the site i
may become active again. This observation leads to the
suitable modification of the branching process to describe
the one-dimensional case. We should take into account
explicitly the return of the activity just in the next step.
We will do this by setting different branching probabilities
for a site which was active at the previous step (i.e. the
site to the left) and for the site which did not have to be
(the site to the right).

Because the grains are added only on the site i = 1, we
have zi ≥ 0 ∀i. The condition that the site topples with
probability 1 if z > 2 ensures that zi ≤ 2 ∀i. We denote Na
as the number of sites with z = a. So, picking randomly
a site, we have probability pa = N0/(N0 + N1 + N2) of
having z = a, where a = 0, 1, 2.

Let us now describe the construction of the branch-
ing process corresponding to the one-dimensional rice-pile.
There are three types of the points on the tree cre-
ated by the branching process, according to the value of
z ∈ {0, 1, 2}. We denote qa the probability that a point
with z = a branches. The points with z = 0 do not branch,
i.e. q0 = 0, while the points with z = 2 always branch, so
q2 = 1. The points with z = 1 branch with probability α,
i.e. q1 = α. The approximation consists in supposing that
if a site did not topple in the previous step, it has prob-
ability pa of having z = a, while if the site did topple in
the last step, the probability of having z = a is modified
due to the previous toppling to the value

p′a =
qa+1 pa+1∑2
b=0 qb+1 pb+1

(2)

where we used p3 = q3 = 0 for convenience.
If a branching occurs at a site, two new branches (“left”

and “right”) emanate from it. The probability that the
right branch ends with a point with z = a is pa, while
for the left branch the probability is p′a. This way the tree
corresponding to the branching process is created. The
above described rules are illustrated in Figure 1.

The root of the tree should be treated separately. The
reason is that in the ricepile model the avalanche starts
by dropping a grain always on the left edge of the pile, i.e.
on the site i = 1. If it topples, it transfers a grain only to
the right, while the grain going to the left falls off the sys-
tem. If we translated this feature to the description of our
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Fig. 1. Illustration of the branching process. In (a) the pro-
cesses following a grain drop are depicted. The original config-
urations and their probabilities are in the left column, the final
ones are in the right column. The possible final configurations
resulting from a toppling are framed together with their non-
normalized probabilities. In (b) the correspondence is shown
between one branching event and the toppling, in which one
new grain is added and two grains (shaded) are displaced to
the left and to the right from the toppling site. In (c) a sample
realization of the tree is sketched. The full circles placed on
the right-hand branches correspond to probabilities pa, while
empty circles on the left-hand branches have modified proba-
bilities p′a.

branching process, the root would consist either of a single
non-branching point, or a point with a single branch (the
right one) emerging from it. However, we are interested
in the regime of long trees, where the different behaviour
of the root from the rest of the tree is irrelevant. So, we
assume that in the branching process the root also obeys
the same rules as all other points. Thus, all points, includ-
ing the root, have either zero or two branches emanating
from then.

The key quantity will be P an (s), the probability that a
tree consisting of n levels starting with a point of type a
contains s branchings. The probability of having s branch-
ings (i.e. avalanche of size s) is then Pn(s) =

∑
a paP

a
n (s).

We can easily derive the recurrence relation for P an (s)
which becomes particularly simple if we use the charac-
teristic function. We obtain

P̂ an (ζ) = (1− qa) + qaζ
2∑

b,c=0

pbp
′
cP̂

b
n−1(ζ)P̂ cn−1(ζ) . (3)
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A straightforward calculation leads to the following
equations for the characteristic functions

P̂ 0
n(ζ) = 1

P̂ 1
n(ζ) = 1− α+ αP̂ 2

n(ζ) (4)

and

Pn(s) = (αp1 + p2)P 2
n(s) for s > 0 . (5)

Therefore the basic quantity of interest will be the char-
acteristic function P̂ 2

n(ζ). All properties of the branching
process can be computed from it. The set of equations
(3) thus represent a single recurrence equation for P̂ 2

n(s),
which in the limit n→∞ leads to quadratic equation for
the stationary distribution P̂ 2(ζ) = limn→∞ P̂ 2

n(ζ). We
obtain explicitly

1
ζ
P̂ 2(ζ) =

(αp1 + (1− α)p2) (1− αp1 − p2)
p2 + αp1

+
αp2 + 2α (1− α) p1p2 + (1− 2α) p2

2 + p1
2α2

p2 + α p1
P̂ 2(ζ)

+ αp2(P̂ 2(ζ))2 .
(6)

2.4 Criticality

The discriminant D(ζ) of equation (6) depends on the
parameters p1, p2, and α. The branching process is critical
if D(1) = 0. This implies the following relation

−αp1 − (1− α) p2 + 2αp1p2 + p1
2α2 + p2

2 = 0 (7)

which determines a surface in the parametric space. On
this surface the process is critical and the distribution of
avalanche sizes has a power-law tail with exponent τ =
3/2.

However, the latter statement is not strictly true in
the sense that if the coefficient at the quadratic term in
equation (6) is zero, the process is not a true branching
process, because each parent can have at most one off-
spring. This corresponds to a process with an exponential
distribution of avalanche sizes, which we will call, in this
work, a “one-dimensional BTW process”. The important
feature which makes this different from a generic branch-
ing process is that there are no true branching points.
Indeed, there may be a non-zero probability that the pro-
cess stops at a given point, but there is zero probabil-
ity of splitting into more than one branch. Therefore, the
process does not generate tree-like structures, but linear
chains of random length. Both the one-dimensional BTW
and branching processes have the same general form (1)
of the distribution of avalanches for large s, but the one-
dimensional BTW process is characterised by the expo-
nents τ = 0, η = −1. Therefore, in addition to checking
the criticality condition (7) we must also look at the be-
haviour close to the singularity.

We will prove in Section 3.2 that in the thermody-
namic limit our rice-pile model self-organizes so that the
parameters stabilise at values

p1 = max(0,
2α− 1
α

)

p2 =1− α . (8)

If we insert these values into the criticality condi-
tion (7), we find that it is satisfied for an values of α,
including the limit values of 0 and 1. At the same time we
find that the singularity is always located at ζ0 = 1. (In-
deed, as we discussed in section 2.2, the criticality of the
process is equivalent to the condition ζ0 = 1.) However,
we find that the type of the singularity corresponds to the
exponents η = 1/2, τ = 3/2 (critical branching process)
only for α’s within the open interval (0, 1), while at the
points 0 and 1 the model corresponds to one-dimensional
BTW process. This can be easily interpreted in the lan-
guage of sand- and rice-piles. Indeed, for α = 0 and 1
the system recovers the behaviour of a one-dimensional
BTW sand-pile, which does not exhibit critical behaviour
in the usual sense. (In fact, the avalanche distribution does
exhibit a power-law distribution: all avalanche sizes have
the same probability, which corresponds to the power with
exponent 0. But this situation is not usually described as
critical behaviour).

2.5 Crossover behaviour

The question arises, how does the behaviour with expo-
nent τ = 3/2 inside the interval [0, 1] cross over to the
exponent τ = 0 at the edges. As the critical behaviour
is related to the singularities of the characteristic func-
tion, we will turn our attention to the investigation of the
function P̂ 2(ζ) in more detail.

Indeed, we find that if we expand the solution of equa-
tion (6) for small values of the parameter ρ defined as

ρ(ζ) =
2α (1− α)

ζ−1 − 1 + 2α (1− α)
(9)

we can express the solution in terms of ρ and expand in
the lowest order (for ρ2 � 1)

P̂ 2(ζ) =
1
ρ
−
√

1
ρ2
− 1 ' ρ(ζ)

2
. (10)

While, as noted earlier, the exact solution for P̂ 2(ζ) has
always the singularity of the type η = 1/2 for ζ → ζ0 =
1, the approximate behaviour (10) has a singularity with
η = −1 located at the point ζ′0 = (1− 2α (1− α))−1 > 1.
When α goes to either 0 or 1, the value of ζ′0 approaches 1.
This suggests the following scenario. For large avalanches,
i.e. 1− ζ � ζ′0−1 the singularity at ζ0 = 1 is relevant and
the avalanche size distribution has a power-law tail with
exponent τ = 3/2.

For shorter avalanches, i.e. 1− ζ larger or comparable
to ζ′0 − 1 the singularity at ζ′0 becomes dominant. There-
fore, for short avalanches we have one-dimensional BTW
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behaviour and P (s) ∼ exp(−s/s0) with a cutoff

s0 = |1− ζ′0|−1 =
1− 2α (1− α)

2α (1− α)
· (11)

The next step is to investigate the behaviour of s0

when α approaches either 0 or 1. We find this by expand-
ing the expression for ζ′0 as a function of α around the
points 0 and 1, respectively. To make the notation more
compact, let us introduce the variable µ ∈ {0, 1}, which
distinguishes the two limit points α = 0 and 1. We can
see from (11) that the cutoff diverges as

s0 '
1

2 |α− µ| (12)

for α→ µ.
On the other hand, sufficiently close to the singular-

ity at ζ → ζ0 = 1 the exponent η = 1/2 is relevant. The
question is, how close to ζ = 1 does the behaviour cross
over from one type to the other. We have one-dimensional
BTW behaviour for ρ2 � 1, and a critical branching pro-
cess type of behaviour for 1− ρ2 � 1. A typical crossover
value ζcr can be found by solving the equation

ρ(ζcr) =
1
2
· (13)

The avalanche size distribution will exhibit the crossover
around scr = 1/|1− ζcr|. For s� scr the one-dimensional
BTW behaviour with exponential cutoff, diverging to in-
finity for α = 0 and 1, will apply. While for s� scr the dis-
tribution will have a power-law tail with the usual mean-
field exponent −3/2, and therefore exhibits self-organized
criticality.

The point of the transition between SOC and one-
dimensional BTW when α approaches 1 or 0 lies in the
diverging crossover value for the avalanche size. Similarly
as in the case of s0, by solving equation (13) with defini-
tion (9) we find the following limiting behaviour

scr '
1

2 |α− µ| ' s0 (14)

for α→ µ.
We can see, comparing equations (12) and (14), that

the cutoff for the one-dimensional BTW behaviour is
asymptotically equal to the crossover at which the crit-
ical branching process behaviour sets on. This suggests
the scaling form

P (s) ' 1
s0(α)

F (
s

s0(α)
) (15)

valid for s� 1 and α close to 0 and 1. The scaling function
has the form F (x) ∼ e−x for x� 1 and F (x) ∼ x−3/2 for
x � 1. Indeed, we can find the Laplace transform of the
scaling function as∫ ∞

0

e−x(y−1) F (x) dx = y −
√
y2 − 1 . (16)

From here we obtain immediately the expression for the
scaling function through the Bessel function of imaginary
argument

F (x) =
e−x

x
I1(x) . (17)

The expected behaviour for x � 1 and x � 1 can be
verified directly by inspecting the asymptotic behaviour
of the Bessel function.

3 Self-organization

3.1 Self-organized branching process

In the basic setup of our branching process, all three
parameters α, p1, p2 are freely chosen. However, in the
rice-pile model the only free parameter is α. The number
of sites with given z can change during an avalanche, so
that the probabilities p1 and p2 are also modified. This
defines a flow in the space of parameters p1, p2. Our task
now is to establish stable fixed points of the dynamics and
check whether they satisfy the condition (7). If that hap-
pens, we can conclude that the system is self-organized
critical.

There are four types of events, which can happen dur-
ing an avalanche. Let us denote them as T2, T1, E1, and
E0. In the event T2, a point with z = 2 receives a grain
and topples. As a result, the number of sites with z = 2
is decreased by 1, N2 → N2− 1, and number of sites with
z = 1 is increased by 1, N1 → N1 + 1. Similarly, in the
event T1 a point with z = 1 topples, N1 → N1 − 1 and
N0 → N0 + 1. In event E1 a site with z = 1 receives a
grain but does not topple, N1 → N1−1 and N2 → N2 +1,
and finally in event E0 a site with z = 0 receives a grain
and does not topple, N0 → N0 − 1 and N1 → N1 + 1.

Using the variables y ∈ {T,E} and a, b ∈ {0, 1, 2},
let us denote sayb,n the number of events of the type yb
occurring at the level n within the branching process,
on condition that the very first site had z = a. There
are sayb =

∑∞
n=0 sayb,n such events in the entire real-

isation of the branching process. On average, there are
〈syb〉 =

∑
a pa〈sayb〉 events of the type yb. The averages

〈syb〉 are of central importance for the dynamics of the
self-organization and can be easily obtained as follows.

For the characteristic function of the probability dis-
tribution of the number of events sayb,n we obtain an
equation analogous to (3). To study the self-organization,
we will need only the average number of events, which is
〈sayb,n〉, calculated as the derivative of the characteristic
function. Hence

〈sayb,n〉 = qa
∑
c

(pc + p′c)〈scyb,n−1〉. (18)

This is a set of three recurrence relations, which may be
reduced to one equation only, by considering the relations
〈s0yb,n〉 = 0 and 〈s1yb,n〉 = α 〈s2yb,n〉, valid for n > 1. If
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we take as the basic quantity the average 〈s2yb,n〉, we get
a recurrence relation determining a geometric sequence

〈s2yb,n+1〉 = κ〈s2yb,n〉 (19)

with quotient

κ =
αp2 + (p2 + αp1)2

p2 + α p1
· (20)

We recognise in the stationarity condition κ = 1 the equa-
tion (7), implying the criticality of the branching process.

Summation of the infinite geometric series immediately
gives

〈syb〉 =
(
pb + (pb + p′b)

α p1 + p2

1− κ

)
〈sbyb,1〉 (21)

where the initial conditions are given by 〈sbTb,1〉 = qb and
〈sbEb,1〉 = 1− qb.

The self-organization of the branching process is due
to the changes in the numbers Na, caused by the toppling
(and non-toppling) events. These numbers determine the
probabilities pa. Therefore, for fixed α the self-organized
branching process (SOBP) S(α) consists of an (infinite)
sequence of branching processes

S(α) = (22)

[B(α, p(0)
1 , p

(0)
2 ),B(α, p(1)

1 , p
(1)
2 ),B(α, p(2)

1 , p
(2)
2 ), . . . ]

where B(α, p1, p2) is the branching process determined by
fixed parameters α, p1, p2, defined above. The branching
processes within the sequence differ only by the values of
the parameters p1, and p2. Let us consider the tth branch-
ing process in the sequence. When realised, it changes the
original values of the numbersNa, or, equivalently, the val-
ues of the parameters pa. The average change is uniquely
determined by the average number of events 〈syb〉. So, the
SOBP is entirely determined by the transition relations
connecting the values of the parameters in the tth and
(t+ 1)th step

p
(t+1)
i − p(t)

i = Ti(p
(t)
1 , p

(t)
2 ) (23)

for i ∈ {1, 2}. We find explicitly

T1(p1, p2) =
αp1 + (1− α)p2 − α(2− α)p2

1 − p2
2 − 2(1− α)p1p2

αp1 + (1− α)p2 + 2αp1p2 + p2
2 + α2p2

1

(24)

T2(p1, p2) =
α(1− α)p2

1 + (1− 2α)p1p2

αp1 + (1− α)p2 + 2αp1p2 + p2
2 + α2p2

1

·

3.2 Fixed point

The fixed point of the self-organization dynamics can be
found immediately by equating the right-hand sides of
equations (25) to zero. Direct solution of the two coupled
equations gives three fixed points

p1 = 0, p2 = 0 (25)
p1 = 0, p2 = 1− α (26)
p1 = 2α−1

α , p2 = 1− α . (27)

The correct solution is determined by stability consider-
ations. The relations (25) are linearised around the fixed
points and the eigenvalues of the resulting matrices of rank
2 are found. The result is that the fixed point (25) is al-
ways unstable, while (26) is stable for α ∈ [0, 1/2) and (27)
is stable for α ∈ (1/2, 1]. For α = 1/2 the fixed points (26)
and (27) coincide and both of them are marginally stable
(i.e. the eigenvalues have zero real part).

Therefore, we find that the fixed point corresponds to
the values of the probabilities

p1 = max (0,
2α− 1
α

)

p2 =1− α (28)

which proves the already announced result of equation (8).

3.3 Finite-size effects

In the numerical simulations of the rice-pile model
[33,34,36,60] attention is paid to the fact that the crit-
ical behaviour is observed only for large enough systems
and with α not too close to neither 0 nor 1. We have al-
ready shown how the crossover length blows up when α
approaches the edge values 0 or 1. It is obvious then, that
for small systems the crossover value of the avalanche size
may not be accessible and the critical regime in the tail of
the distribution is not observed at all. In this subsection
we will investigate the consequences of the finite length of
the branching process. There are two phenomena where
the finite size enters the problem. First, if the maximum
number of generations in the branching process is L, in-
stead of infinity, the distribution of the avalanche sizes
will not extend to infinity either, but will be bounded by
s < smax = 2L − 1. Moreover, if we take for example
p1 = 1, p2 = 0, α = 1, then all avalanches will have size L,
therefore a peak at s = L will occur, and P (s) = δ(s−L).
If we move slightly from this position by increasing p2 and
decreasing p1 and α, a structure of multiple peaks located
at s = L, 2L− 1, 3L− 3, ... will appear. This makes the
analysis very complicated.

The second consequence of finite size is the shift in the
self-organized value of the parameters p1 and p2, which
for finite L will deviate from the critical values. Therefore,
the avalanche-size distribution will develop an exponential
cutoff of the form P (s) ∝ s−3/2 exp(−s/s1).

As the first problem brings particular new difficul-
ties, we will concentrate only on the second one. This
makes the analysis less consistent, but feasible. Thus, we
should stress that in the following we will suppose that
the branching process in question has unbounded length,
but the self-organization is made in such a way, that only
the first L generations of the branching process are taken
into account.

Instead of working with the finite-L version of equa-
tions (23) and (25), describing the approach to the fixed
point, we can use the set of equations

〈sE1〉 = 〈sT2〉
〈sE0〉 = 〈sT1〉 (29)
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which determine the position of the fixed point. The only
information lost in equations (29) is the stability of the
fixed points. However, we suppose the stability will not
be affected by finite-size effects. Therefore, we will rely on
the stability analysis performed for L =∞ also in the case
of finite L and calculate the finite-size corrections starting
with equation (29).

The point is that equations (29) should also hold for
finite L. In fact, the expression (21) for the averages 〈syb〉
assume the same form, only the factor (κ − 1) arising in
the L =∞ version should be replaced by the factor K =
(κ− 1)/(κL−1− 1). Assuming K small for large L, we can
find p1 and p2 in lowest order of K. Then, we return to
the definition of K and find that K ∝ L−1, confirming
that our approach is consistent.

Hence, for finite L we find, by solving equations (29)
to lowest order of 1/L, for α ∈ (0, 1/2)

p1 = − 1− α
(2α− 1)2

ln(1− γ)
L

+O(
1
L2

)

p2 = 1− α− 1− α
2α− 1

ln(1− γ)
L

+O(
1
L2

) (30)

and for α ∈ (1/2, 1)

p1 =
2α− 1
α

+
5α2 − 5α+ 1
(2α− 1)2 α

ln(1− γ)
L

+O(
1
L2

)

p2 = 1− α+
1− α
2α− 1

ln(1− γ)
L

+O(
1
L2

) (31)

where we denoted

γ =
1
2

1− 2α
1− α for α ∈ (0, 1/2)

γ =
1
2

2α− 1
α

for α ∈ (1/2, 1) . (32)

The above formulae confirm that the explicit limit L→∞
gives the same result as obtained previously when working
directly with L =∞.

Using these results we can find the position of
the square-root singularity in the characteristic func-
tion for the avalanche size distribution, solving equation
D(ζ0) = 0. The distance from 1 then determines the ex-
ponential cutoff of the distribution. We find

1/s1 = |ζ0 − 1| = σ(α)
L2

+O(
1
L3

) (33)

where

σ(α) =
ln2(1− γ)
4α (1− α)

for α ∈ (0, 1) (34)

and asymptotically for L→∞ and α fixed the avalanche
distribution becomes the function of sL−2 only,

P (s;α,L) ∝ L−3G(sL−2 σ(α)) (35)

and the scaling function has the form

G(x) = x−3/2e−x . (36)

This scaling holds well for all α with the exception of the
point α = 1/2, where we have γ = 0 and hence σ(α) = 0.
Then, the next order in 1/L takes over and the scaling
changes.

Let us use again the variable µ ∈ {0, 1}, which distin-
guishes the two limiting points α = 0 and 1. The factor
σ(α) diverges as σ(α) ' σ0 |α − µ|−1 for α → µ, where
σ0 = (ln 2)2/4. Therefore, we can write the following scal-
ing form for the avalanche size distribution

P (s;α,L) ∝ L−3|α− µ|− 3
2 G(sL−2|α− µ|−1 σ0) (37)

for α→ µ.
We can see that the power-law distribution holds only

for avalanches shorter than L2 |α − µ|. In other words, if
the parameter α is close to the end-points of the interval
[0, 1], we need to have systems of the size L� 1/

√
|α− µ|

in order to be able to observe any sign of self-organized
criticality.

In the above calculations we tacitly assumed that we
are beyond the regime we have called “one-dimensional
BTW” in Section 2.5. This means s � scr. In fact, we
can always reach this regime by choosing L large enough.
Therefore the presence of the one-dimensional regime does
not influence the scaling behaviour for large L. More pre-
cisely, we should have L2 |α − µ| � scr. But because scr

itself diverge for α→ µ as |α−µ|−1, we obtain a stronger
condition for the scaling (37) to be valid, namely

L� |α− µ|−1 (38)

if α→ µ.

4 Conclusions

We investigated analytically the self-organized critical
rice-pile model. We defined a self-organized branching pro-
cess, suitable for one-dimensional problems. The model is
characterised by the parameter α ∈ [0, 1], the probabil-
ity of toppling at a sub-threshold site. For both limiting
values α = 0 and α = 1 the model is equivalent to the
one-dimensional BTW model with trivial (uniform) dis-
tribution of avalanches.

We found that in the thermodynamic limit the sys-
tem is self-organized critical for all values of α within the
open interval (0, 1), with power-law tail in the distribution
of avalanche sizes with mean-field value of the exponent,
τ = 2

3 . However, the power-law behaviour holds only for
avalanches longer than a certain crossover value of the
avalanche size. The crossover diverges when α approaches
either of the limiting points of the interval [0, 1]. We also
found the scaling as well as the exact form of the scal-
ing function for avalanche distribution close to these limit
points. This describes how the one-dimensional BTW be-
haviour develops when approaching the limiting points.

The finite-size effects play important role in determin-
ing whether the model is self-organized critical or not. In
our model the SOC behaviour starts to occur at larger
sizes and the closer we are to the limiting points α = 0
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or 1. We found the form of the finite size and scaling in
our self-organized branching process and determined the
necessary condition for the the power-law regime in the
avalanche distribution to be observable, when we approach
the limiting points.

I wish to thank Mária Markošová for numerous useful dis-
cussions which motivated me in this work. I am indebted to
Petr Chvosta for clarifying comments regarding stochastic pro-
cesses. This work was supported by the Grant Agency of the
Czech Republic, project No. 202/00/1187.
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